

Safety of cathodal transcranial direct current stimulation early after ischemic stroke

Introduction

According to the hypothesis of interhemispheric inhibition, the unaffected motor cortex ($M1_{UH}$) may excessively inhibit the motor cortex of the affected hemisphere ($M1_{AH}$) in subjects with stroke leading to exaggeration of the contralateral upper limb paresis. TDCS can be used to either inhibit $M1_{UH}$, excite $M1_{AH}$, or both. Typically, anodal tDCS increases brain excitability and cathodal tDCS (ctDCS) has the opposite effect [1].

Increased excitation of $M1_{AH}$, either directly by ipsilesional anodal tDCS or indirectly by cathodal tDCS of the unaffected hemisphere (ctDCSM1 $_{UH}$) might be harmful when applied early after stroke, as suggested by findings of increase in infarct size after anodal tDCS [2] and decrease in cerebral blood flow after ctDCS in rats [3]. Even though no serious adverse events have been reported in humans with stroke, few studies provided detailed information about tolerability and safety of this intervention [4].

We compared safety and tolerability between real and sham stimulation in thirty patients receiving ctDCSM1 $_{UH}$ within the first six weeks after stroke.

Methods

Inclusion and exclusion criteria as well as characteristics of the patients are shown in the Supplementary Material.

Patients were randomized to receive either active ctDCSM1 $_{UH}$ or sham prior to physical therapy, three times a week, over two weeks. In each session, a sponge anode (7×5 cm) soaked in saline solution was placed over the ipsilesional supraorbital area. The cathode was placed on the contralateral C3/C4 position. The intensity of stimulation was 1 mA, ramps up and down lasted for 10 seconds (DC-stimulator plus, NeuroConn, Germany). In the active group, tDCS was applied for 20 minutes and in the sham group, for 30 seconds. Visual inspection of the skin under the electrodes was performed after each session.

The primary outcome was the frequency of adverse events. A blinded investigator asked patients about symptoms with a standard questionnaire adapted from Fertonani et al. [5]. MRI was performed before the first, and after the last session of treatment.

Frequencies of adverse events were compared with chi-square or Fisher's exact tests. Infarct volumes were analyzed with Generalized Estimating Equations (GEE) with factors TIME and GROUP.

Results

The most common adverse events were paresthesias under the anode in both groups (Table 1). Sleepiness was more frequent after active than sham ctDCSM1 $_{UH}$ but the between-group difference was not statistically significant.

One patient in the active group (Supplementary Material) spontaneously reported paresthesias in the paretic arm during ctDCSM1 $_{UH}$. During the first session of treatment at 11 days post-stroke, the patient reported tingling on the entire palm of the hand and the medial portion of the right forearm. The paresthesias started 5 min after the onset of stimulation and ceased immediately at its end. The patient denied having similar symptoms before. His right arm was not positioned in a way that might favor compression of the ulnar nerve. The neurological examination remained unchanged. The patient refused to undergo another MRI due to claustrophobia. An EEG was normal. He reported no paresthesias in the following sessions of active ctDCSM1 $_{UH}$ and completed the study uneventfully. He was assessed three months later and denied any further symptoms.

Infarct volumes were 39.8 ± 46.6 cm 3 before treatment and 35.3 ± 45.9 cm 3 post-treatment for the active group, 25.2 ± 35 cm 3 before treatment and 22.3 ± 32.9 post-treatment for the sham group. GEE revealed a significant main effect of TIME ($p < 0.001$) but no effect of GROUP ($p = 0.418$) or GROUP x TIME interaction ($p = 0.458$). Volumes decreased in both groups after treatment, compared to before treatment ($p < 0.001$). There were no recurrent strokes in either group.

Discussion

The main finding of this study is that active ctDCSM1 $_{UH}$ was safe and well tolerated when administered within the first weeks post-ischemic stroke.

In a meta-analysis of adverse events in studies with various types of tDCS montages and intensities in heterogeneous conditions, paresthesias and erythema under the electrodes were significantly more frequent in the active than in sham groups [6]. Three factors likely contribute to the discrepancy between these results and our findings: First, the meta-analysis predominantly included conditions other than stroke (pain, migraine, tinnitus, schizophrenia and depression) and dissimilar tDCS paradigms, stimulation intensities and number of repeated sessions, while our study was concerned only to early stroke patients submitted to 6 sessions of fixed intensity stimulation (1 mA) over the unaffected

Table 1

Frequency of adverse events in the active and sham groups.

Adverse event	Active (%)	Sham (%)	P-value ^a
Paresthesias under anode			
Tingling	84.6	78.6	>0.999
Itching	69.2	57.1	0.695
Pinching	15.4	21.4	>0.999
Shock	7.7	21.4	0.596
Stinging	0	28.6	0.098
Bite	0	21.4	0.222
Undefined sensation	15.4	21.4	0.999
Sleepiness	61.5	28.6	0.085
Skin redness under anode	15.4	14.3	>0.999
Decreased concentration	7.7	0	0.481
Fatigue	7.1	0	0.481

^a Chi-square or Fisher's exact tests.

hemisphere. Second, the collection of data in most of the studies included in the meta-analysis was retrospective, while we used standardized questionnaires and performed a systematic inspection of the skin under the anode. Third, it is possible that, because of our relatively small sample size, our statistical analysis was underpowered for showing significant differences between real and sham tDCS groups.

The rate of sleepiness during tDCS was nonsignificantly more than twice greater in the active than in the sham group. Whether tDCS of M1 may promote on-line changes in arousal in subjects with stroke, deserves further examination.

For the first time, we report paresthesias after ctDCSM1_{UH} *ipsilateral* to the symptoms. Paresthesias in the contralateral upper limb were described in healthy subjects during single-pulse or 20Hz transcranial magnetic stimulation (rTMS) of the contralateral postcentral gyrus [7,8]. Also, paresthesias were reported after anodal tDCS of the contralateral M1 in a healthy subject [9]. In this case, the symptom was considered to be part of a migraine aura. Despite the fact that our patient had history of migraine, we consider unlikely that paresthesias could represent a first-ever aura because they were not followed by headache, nausea or vomiting. We hypothesize that disinhibition of the affected hemisphere by ctDCSM1_{UH}, at an early stage after stroke when increased excitability of the perilesional tissue is expected, may have led to the symptoms. Because paresthesias are subjective, we cannot completely rule out a functional symptom restricted to the first session of treatment in our patient.

The lack of recurrent strokes or enlargement of lesions post-treatment in either group abates concerns about possible tissue injury caused by ctDCSM1_{UH} delivered early after stroke [3]. Interestingly, a potential neuroprotective role of ctDCSM1_{UH} in humans with stroke has been recently suggested [10].

Conclusions

No serious adverse events occurred during CtDCSM1_{UH} within the first weeks post-ischemic stroke.

Declarations of interest

None.

Conflicts of interest

None.

Funding

This study was funded by Hospital Israelita Albert Einstein (grant 2250-14). DSB received a scholarship from Instituto UNIEMP.

Acknowledgments

We thank Alda Castro, Karina Correa and Raul Valiente for help in patient recruitment. We thank Bruna Portes for technical assistance in collection of imaging data.

Appendix A. Supplementary data

Supplementary data to this article can be found online at <https://doi.org/10.1016/j.brs.2018.11.009>.

References

- [1] Nowak DA, Grefkes C, Ameli M, Fink GR. Interhemispheric competition after stroke: brain stimulation to enhance recovery of function of the affected hand. *Neurorehabilitation Neural Repair* 2009;23:641–56.
- [2] Peruzzotti-Jametti L, Cambiaghi M, Bacigaluppi M, Gallizoli M, Gaude E, Mari S, et al. Safety and efficacy of transcranial direct current stimulation in acute experimental ischemic stroke. *Stroke* 2013;44:3166–74.
- [3] Mielke D, Wrede A, Schulz-Schaeffer W, Taghizadeh-Waghefi A, Nitsche MA, Rohde V, et al. Cathodal transcranial direct current stimulation induces regional, long-lasting reductions of cortical blood flow in rats. *Neurol Res* 2013;35:1029–37.
- [4] Russo C, Souza Carneiro MI, Bolognini N, Fregni F. Safety review of transcranial direct current stimulation in stroke. *Neuromodulation* 2017;20:215–22.
- [5] Fertonani A, Ferrari C, Miniussi C. What do you feel if I apply transcranial electric stimulation? Safety, sensations and secondary induced effects. *Clin Neurophysiol* 2015;126:2181–8.
- [6] Nikolin S, Huggins C, Martin D, Alonso A, Loo CK. Safety of repeated sessions of transcranial direct current stimulation: a systematic review. *Brain Stimul*. 2018;11:278–88.
- [7] Sugishita M, Takayama Y. Paraesthesia elicited by repetitive magnetic stimulation of the postcentral gyrus. *Neuroreport* 1993;4:569–70.
- [8] Amassian VE, Somasundaram M, Rothwell JC, Britton T, Cracco JB, Cracco RQ, et al. Paraesthesia are elicited by single pulse, magnetic coil stimulation of motor cortex in susceptible humans. *Brain* 1991;114:2505–20.
- [9] Berezin HG, Milosev A, Pearce AJ, Tooley GA, Enticott PG. Report of transient paraesthesia following transcranial stimulation. *Brain Stimul*. 2015;8:675–6.
- [10] Nicolo P, Magnin C, Pedrazzini E, Nguyen-Danze A, Guggisberg AG. Transcranial direct current stimulation reduces secondary white-matter degradation after stroke. *Brain Stimul*. 2018;11:1417–9.

Adriana B. Conforto*

Hospital Israelita Albert Einstein, Av. Albert Einstein 627, São Paulo, SP, 05652-900, Brazil

Hospital das Clínicas/São Paulo University, Av. Dr. Enéas C. Aguiar 255/5084, São Paulo, SP, 05403-000, Brazil

Larissa Servinsskins, Joselisa P.Q. de Paiva, Edson Amaro Jr., Daniel G. dos Santos, Priscila Soares, Danielle S. Pires
Hospital Israelita Albert Einstein, Av. Albert Einstein 627, São Paulo, SP, 05652-900, Brazil

Jed Meltzer

Rotman Research Institute, Baycrest Centre, 3560 Bathurst Street, Toronto, Ontario, M6A 2E1, Canada

Ela B. Plow

Cleveland Clinic Foundation, Cleveland, OH, 44195, USA

Paloma F. de Freitas, Danielli S. Speciali, Priscila Lopes, Mario F.P. Peres

Hospital Israelita Albert Einstein, Av. Albert Einstein 627, São Paulo, SP, 05652-900, Brazil

Gisele S. Silva
Hospital Israelita Albert Einstein, Av. Albert Einstein 627, São Paulo,
SP, 05652-900, Brazil

Federal University of São Paulo, Rua Pedro de Toledo 650, Vila
Clementino, São Paulo, 04039-000, Brazil

Shirley Lacerda, Danielle de Sá Boasquevisque
Hospital Israelita Albert Einstein, Av. Albert Einstein 627, São Paulo,
SP, 05652-900, Brazil

* Corresponding author. Hospital Israelita Albert Einstein, Av.
Albert Einstein 627, São Paulo, SP, 05652-900, Brazil.
E-mail addresses: adriana.conforto@gmail.com,
adriana.conforto@einstein.br (A.B. Conforto).

8 October 2018
Available online 20 November 2018